Stone-ground Wood Pulp-reinforced Polypropylene Composites: Water Uptake and Thermal Properties

نویسندگان

  • Joan Pere López
  • Jordi Gironès
  • José Alberto Méndez
  • Nour-Eddine El Mansouri
  • Miquel Llop
  • Pere Mutjé
  • Fabiola Vilaseca
چکیده

Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 oC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fiber reinforced plastic composites using recycled materials

This work investigates the feasibility of using recycled high density polyethylene (rHDPE), recycled polypropylene (rPP) and old newsprint fiber (ONP) to manufacture fiber reinforced composites. The boards were made through air-forming and hot press. The effects of the fiber loading and coupling agent content on tensile, flexural, internal bond properties and water absorption and thickness swel...

متن کامل

Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Lignocellulose Nanofibers Dried in Melted Ethylene-Butene Copolymer

Lignocellulose nanofibers were prepared by the wet disk milling of wood flour. First, an ethylene-butene copolymer was pre-compounded with wood flour or lignocellulose nanofibers to prepare master batches. This process involved evaporating the water of the lignocellulose nanofiber suspension during compounding with ethylene-butene copolymer by heating at 105 °C. These master batches were compou...

متن کامل

Effect of Wood Flour Content on the Hardness and Water Uptake of Thermoplastic Polymer Composites

Polypropylene/wood flour composites were melting compounded in an internal mixer at 190°C and 60 rpm rotor speed and then samples were fabricated by injection molding. Effects wood flour content on the physical properties of composites was investigated. For this purpose, hardness, water absorption and thickness swelling of samples was determined at different levels of wood flour content. The re...

متن کامل

Analysis of the Tensile Modulus of Polypropylene Composites Reinforced with Stone Groundwood Fibers

One of the most relevant properties of composite materials to be considered is stiffness. Fiberglass has been used traditionally as a fibrous reinforcing element when stiff materials are required. However, natural fibers are been exploited as replacements for synthetic fibers to satisfy environmental concerns. Among the different natural fibers, wood fibers show the combination of relatively hi...

متن کامل

Green Composites Based on Blends of Polypropylene with Liquid Wood Reinforced with Hemp Fibers: Thermomechanical Properties and the Effect of Recycling Cycles

Green composites from polypropylene and lignin-based natural material were manufactured using a melt extrusion process. The lignin-based material used was the so called "liquid wood". The PP/"Liquid Wood" blends were extruded with "liquid wood" content varying from 20 wt % to 80 wt %. The blends were thoroughly characterized by flexural, impact, and dynamic mechanical testing. The addition of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012